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1 . INTRODUCTION

Pressure vessels and naval structures are obtained by specific assemblage of

plate and shell panels. The knowledge of the behavior of these structural

components is essential if optimum design and integrity of the overall

structure for a given set of parameters are sought. [1], [2]

This report deals with the nonlinear analysis of arbitrary thin shell

structures subjected to static loads. The nonlinear analysis includes pre and

post-buckling behavior for any degree of nonlinearity due to large

displacements and large rotations, but small strains.

Despite the important research and development efforts made since the

beginning of the finite element method era, the analysis of shell structures

is still an open active research subject. The following questions are still

actively investigated:

- how to approximate the real three dimensional problem?

- what type of finite element discretization is most appropriate?

- how to solve accurately and efficiently the nonlinear equations in

various situations of pre and post-buckling?

- how practical and general is the computer code that aimed to solve the

problem and what are its computer resource needs?

The object of our report is to present a formulation which includes some

recent developments on nonlinear continuum mechanics, plate and shell finite

elements, automatic solution and strategies for nonlinear equations and to

present the possibilities of a computer code that is adapted for mini and

micro-computers to solve moderately small size shell problems.



The nonlinear formulations considered are a Total and an Updated Lagrangian

formulations [3], [4], [5] combined with flat simple triangular elements

having only 3 nodes and the 6 engineering degrees of freedom at the nodes.

The shell finite element is obtained from the superposition of the CST and the

DKT plate bending element known to be very efficient, reliable and effective

for all thin plate bending analysis. [6], [7], [8], [9], [10], [11], The

nonlinear equations are solved using various methods and strategies based on

the full or modified Newton-Raphson method to deal with the automatic

determination of the pre and post- buckling load displacement curves. Three

basic strategies are considered: the load incrementation, the displacement

control method [12], [13], and the arc-length control method [14], [15], [16],

[17], [18]. The FORTRAN 77 routines dealing with the shell element and the

nonlinear solution procedures are compatible with the documented computer code

MEF presented in detail in [19]. The numerical examples presented in this

report have been obtained using a VAX 11/750, a VAX 11/780 and an

APOLLO/DN300.

The Lagrangian Formulations (TLF and ULF) considered in this report are

discussed in chapter 1. The DKT18 triangular shell element is described in

chapter 2. The solution strategy to deal with the automatic determination of

the load deflection curves is presented in chapter 3. The numerical results

are discussed in chapter 4. They deal with nonlinear behavior, buckling,

post-buckling and large rotations of elastic shells subjected to one variable

load parameter.



2. THE LAGRANGIAN FORMULATIONS FOR NONLINEAR SHELL ANALYSIS

2.1 Different configurations of a shell in space.

We consider a shell structure with a fixed orthogonal coordinate system

XYZ (Fig. 1):

- T refers to the undeformed (initial) configuration

- ^T refers to a deformed (intermediate) configuration in equilibrium

under a given set of loads *f

- T refers to a deformed (final) configuration in equilibrium under a

given set of loads f

The purpose of the study is to describe as precisely as possible all

deformed shell configurations like *T and V for given sets of loading,

prescribed displacements, boundary conditions,.... The description

includes def ormational aspects (displacements for ° T, rotations, strains)

and mechanical aspects (true stresses at the material points).

Two Lagrangian formulations are considered in this report:

The Total Lagrangian Formulation (TLF) . In this case all quantities

(displacements, strains and stresses) in the computational process

are related to the undeformed initial configuration. The

intermediate configurations ^T can then be interpreted as final

configurations for different sets of loads or prescribed

displacements. To obtain the exact T solution for thin shells under

Kirchhoff's assumption, the nonlinear Green-Lagrange strain -

displacement expressions must be complete (no terms neglected).

These complete expressions are very complicated and imply second
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derivatives of all the components of the displacement vector u.

Therefore, this approach has not been retained for practical

nonlinear analysis unless further assumptions (like the moderate

rotation hypothesis) are made.

The Updated Lagrangian Formulation (ULF) . In this case an

intermediate configuration ^T is used as a reference configuration

to obtain the (final) configuration r for a given set of parameters

(loads, ...). The *T configuration is supposed to be known ( *r is

in fact a previous T configuration). That is, *F can be fully

described both from the point of view of geometry and of mechanics

(internal stress field). There is theoretically no difference

between TLF and ULF (they both want to solve the same equilibrium

problem) that is to find T. But practically we can take advantage

of the fact that ^T is known and that we want to obtain a

configuration T "not too far" from T. In ULF, T is a neighboring

configuration of ^T. Hence, we can consider approximate nonlinear

strain displacement relations instead of the complicated exact ones

to describe T from ^T. This approach has been considered by many

authors for the nonlinear analysis of thin shells [20], [9], [2],

[21].



2.2 The principle of virtual work

We consider the equilibrium of a thin shell structure in configuration T

subjected to body forces f only. The internal stresses are described by

{ o } which is a vector of three components only, under the assumption of

plane stress (and neglecting the influence of transverse shear

JL

deformation). The conditions of equilibrium in r leads to the following

expression of the principle of virtual work:

y=/<6e>{a}dv-/<6u>{?}dv = (1)
v v

for any { 6 u } such that

:

{ 5 u } = { } on Su ;

v is the volume in T,

Su is the surface with prescribed displacement,

{ 6 u } is an arbitrary virtual displacement vector which is

kinematically admissible,

{ 6 e } is a virtual strain displacement vector compatible with { 6u }•

We note that the components of { 6 u } are defined with respect to the

tangent and normal reference axes of the shell.

The 3D virtual displacement field is of the form:

{ 6 u } = { 6 Uj,, } + z { 6 9 } (2)

z is the coordinate along the thickness h such that:

^ < z < +| (3)

{ 6 i^ } are virtual displacements along two tangent directions x, y on

the deformed middle surface S and along the normal of S (Fig. 2). The



first two components of { 5 9 } are the virtual rotations around axes

tangents in S. The third component of { 6 } is zero:

fS u^ (6 w,

{«%}H {v ; {66}= -<6_w,y

,6 Co

Expression (2) is compatible with the so called Kirchhoff hypothesis

("normal remains mormal"). Eqs. 1 to 3 after integration through the

thickness give:

'F=/(<6um >{N}+<6<>{M})d
s v

- / (< 6 ^ > { fm } + < 6 9 > { m }) d s = (4)
s

where

:

4

{ N } is the three components vector of membrane (direct) forces

{ M } is the three components vector of bending moments

{ 6 em } is the three components vector of virtual membrane

strains

{ 6 x } is the three components vector of virtual curvatures

{ fm } are distributed forces along the tangent directions x, y

and along the normal z

{?m )
m

yy\ (5)

{ m } is a two component vector of distributed bending moments acting

on the shell surface. (In general these components are zero.)

We note that expression 4 is very general and valid for any curved shell

surface where x and y are not necessary orthogonal curvilinear
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coordinates. In the case of arbitrary curvilinear coordinates all

expressions must be expressed in tensorial notation (with covariant and

contravariant quantities).

{ 6 e^j } and {6k} are expressions in terras of { 6 1% } and of the

curvatures of the middle surface ( { 6 < } is an expression of the second

derivative of 6 w)

.

The positive components of { N } and { M } are given for an orthogonal

coordinate system on Figure 3.

The stress resultants are related with the stresses by:

h h
2 2

{ N } = / { a } dz ; { M } = / { o } z dz (6)

-h -h
2 2

The Euler-Lagrange expressions associated with the variational principle

(Eq. 4) are the exact shell equilibrium equations and the mechanical

boundary conditions in terms of the stress resultants. These equations

are complicated, with coupling between { N } and { M } if the shell is

described with arbitrary curvilinear coordinates.

If the shell is flat (or considered so) the three equilibrium equations

are the classical ones:

Nx,x + Nxy,y + fx =

Nxy,x + Ny,y + fy = (7)

M +2M +M + T =
1 lx , xx T a Lxy , xy T * y , yy

T L z w



Other expressions of the principle of virtual work (Eq. 1 or 7) can be

defined using other reference configuration than T: the TLF involves ° r

and ULF involves l T.

10



2.3 The Total Lagrangian Formulation

2.3.1 General expressions

If we consider the arbitrary displacement field in Eq. 1 as the variation

*
of the displacement field ° u between ° r and T:

{ 6 u } = 6 { u } = { 6 u }

then Eq . 1 becomes:

y=/<6 e> {a}dv-/< S u > { T } dv =

v V
V { 6 u } = { } on Su

(8)

where the components of { 6 u } can be defined with respect to the

deformed (unknown) coordinates x, y, z of V or with respect to the

coordinates °x, °y, °z in ° r.

Eq. 8 can be modified as:

<F - / < So e > { S } d°v - / < 6 u > { T } d°v = (9)

°v °v

where { S } are the components of 2n° Piola - Kirchhoff (P.K.) stresses

(tensor [ S ]) and { 6 e } are the variation of the Green-Lagrange

strains (tensor [ e ]). [3]

We have the following relations:

{ o? } = oJ { T } (10)

[ oS ] = J [ U p 1
[ a ) [ u ]

~T (11)

[ 6„e ] = [ SoU ]

T
[ U ] (12)

J is the Jacobian of the deformation, i.e.:

Jo = j^ = det [ F ]
= det [ U ] (13)

where [ «^
] is the deformation gradient at a point of the shell.

11



[ F ] can be decomposed as:

[ oF ] = [ oR ] [ oU ] (14)

where [ R ] corresponds to a pure rotation between a set of coordinates

in °T and the deformed coordinates in r (attached at the same material

point). [ U ] is the symmetic stretch matrix for the material point.

The Green-Lagrange (G-L) strains are:

2[ e ] =
[ oF ]

T
[ F ]

- [ I ] =
[ U ]

T
[ U ]

-
[ I ] (15)

since [ R ] is orthogonal.

The components of [ £ ] are quadratic expressions in terms of the

component displacement of u with respect to the coordinates x, y, z
o o o o

of °T. They are invariant with respect to rigid body motion.

Eqs. 11, 13 and 15 show that under the assumption of small strains we

have:

[ oS ] =
[ a ] (16)

oJ « 1 or d°V = dV (17)

Eq . 16 means that with the approximation of small strain the 2
nd P-K

stresses which are work conjugate to the Green-Lagrange strains,

corresponds to the "true" Cauchy stresses in the deformed shell. The 2nd

P-K stress is therefore a material or co-rotational stress.

This important result is valid for arbitrarily large rotations of the

shell and will be used for both the TLF and ULF formulation.

Eqs. 8, 9 and 16 show also that:

{ 6 e } - { 6 e } (18)

12



Equation 9 is an expression of terms of the displacements u and of the

coordinates °x, °y and °z of °T.

13



2.3.2. Finite element discretization

We consider a shell structure In its initial position ° r. This shell

will be discretized by finite elements (an example using flat faceted

triangular and quadrilateral shell elements is presented on Figure 4) .

Eq. 9 gives with Eqs. 16 and 17:

* = Z ( / < 6o e > { a } dv e - / < 6c u > { 7 } d ve = (19)
e ve ve

where dVe = d°Ve represents the elementary volume on a given element e.

If the nodal variables on an element are { un } , than we can write:

{ o£ } =
[ oB ] { ot^ } (20)

{ 6 e } =
[ B6 ] { Soi^ } (21)

where [ B ] and [ B6 ] both depend upon { un }

Eqs. 19 to 21 give:

V = - E < 6 un > { rn } = (22)
e

with

{ rn } = { fex t > " t ofint ! ( 23 )

{ of int } = / [ B6 ]

T
{ a } d ve (24)

ve

/ < Sou > { T } dv = < 6 un > { fext } (25)
v

After assemblage of all the elements:

14
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Flat elements (from 20)
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* - - < 6 Un > { R } =
(26)

for all { 6 Un } = {0 } on Su

leading to:

{ oR } = { oFext } - { „Fint } = { }int (27)

{ oUn } is the vector of global nodal variables (displacements between

°T and D.

{ R ( Un ) } is the so called residual global vector.

{ o^ext ( o^n) J * s the vector of the global external forces that may be

path-deformation dependant.

{ oFint ( oUn ) } is the vector of global internal forces.

A solution vector ( Un } is such that { R ( Un ) } = { } which

represents a system of nonlinear algebraic equations. These equations

will be solved using algorithms and strategies based on the

Newton-Raphson method. We need, therefore, to define a Jacobian or

tangent stiffness matrix [ oK-p ] which results from the assemblage of

element [ ok^ ] matrices.

A symmetic [ ok^ ] matrix is defined by considering:

«^»f (<6 e> { <5 a } + < 6?e > {a}-< S u> { « })dve
(28)

ve

The first term can in generai be expressed as:

I I
- < 6 un > ([ k£ ] + [ kn Jl ]) { SoUn } (29)

The second term is

I 2
- < SoU^ > [ o k ] { Soi^ }

16
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The third term is:

I 3
= < 6oUn > ([ k x ] { 5oUn } (31)

So that we have:

6Y = < Soiin > [ okt ] {6 un } (32)

with

[ okt ] = [ okA ] + [ o^it ] + [ .k
ff

] - [ .k x ] (33)

[ kl ] depends oniy on { 01% } if the material is nonlinear.

[ O ko ] is the so called geometric stiffness matrix of the form

[ .ko ] - / [ B<|> ]

T
[ N ] [ B

<f)
] dS (34)

s e

where [ B <}> ] is constant in { o^ } and [ N ] is a 2 by 2 matrix of

membrane forces.

[ k^ ] exists if the loading is path dependant (the case of hydrostatic

pressure)

.

In section 3 the above matrix quantities are discussed for a triangular

flat faceted shell element within the approximation of small

strains and moderate rotations.

17



2.4 The Updated Lagrangian Formulation

2.4.1 General expressions

We assume now that an intermediate configuration * r is obtained (we then

know all the quantities regarding geometry as well as internal stresses).

, 1

(The internal stresses in l V { a } are in equilibrium with the body

forces { If } . )

We consider again Eq . 1 expressing the equilibrium in Twith:

{ 6 u } = 6 { lU } = { 6ju } (35)

where { ^u } are the displacement components from * Y to V. Hence we

have

:

i|; = / < 6
L
e > { a } dv - / < 5

x
u > { f } dv =

V V

(36)

V { 5]U } = { } on Su

Eq . 8 is expressed in terms of 2n" P-K stresses with reference to * F and

variation of Green-Lagrange strain between * r and T:

i\> = / < 5ie > { S } d*v - / < 5iu > { T } dK = (37)
1 1 1 1

with

{ {¥ } =
X
J { T } (38)

{ !S } - iJ [ t
U ]"1

[ a ] [ iU J-T (39)

{ 6 lE } = [ 5jU ]

T
[ L

U ] (40)

!J =^ = det [ jF ]
= det [ iU ] (41)

dW

18



[ if ] = [ iR ] [ lU ] (42)

2 [ l£ ] =
[ iF

]T
[ lF ]

-
[ I ] -

[ X
U ]

T
[ X

U ]
- [ I ] (43)

With the approximation of small strains (section 3.1) Eq. 36 can be

replaced by:

$ - / < 6je > {a}dv-/< 6
x
u> { T } dv =

V V

(44)
V { 6

x
u } = { } on Su

with

{ a } = {
1 a } + { !<J }

1

(45)

{ f } = {
l f ) + ( if }

where { ^a } are the incremental stresses between * T and T and { jf } the

incremental forces between * r and T.

In Eq . 44 { S^e } are dependent upon the variations of the displacements

between *r and r and not upon the displacements { u }.

In general 'r is a curved surface and the exact expressions of [ ^ e ] are

not simpler than [ e ]. In fact they are theorically identical when the

lower left index o is replaced by index 1.

19



2.4.2 Finite Element discretization

The shell in configuration *T is discretized by finite elements. The

finite element matrices are of the same general nature as for the TLF.

We just have to substitute index o with index 1.

In defining the tangent stiffness matrix [ ^kt ] by considering 6f we

simply have to take account of the fact that:

{ 6a } = { 6
l
a }

and { 6f } = { 6{f }

In the ULF the "solution" means to find the displacements and the

additional stresses between *r and r that are such that:

< 1* > = { lW > - C lfint > = { } (46)

20



3. DESCRIPTION OF A FLAT TRIANGULAR SHELL ELEMENT

3.1 The DKT18 shell element for linear elastic shells.

The nonlinear analysis presented in this report is based on the

discretization of shells by flat triangular shell elements having three

nodes and the six engineering d.o.f. per node (Fig. 5):

< un > = < U
x

V]_ Wj RX
X

RYj RZj_

U2 V 2 W2 RX2 RY2 RZ2 (47)

U 3 V 3 W3 RX3 RY3 RZ 3 >

Oj, vi> W^ i = 1,3 are the translational d.o.f with respect to the

global coordinates axes X, Y, Z.

RX^, RY^, RZ^ i = 1,3 are the rotational d.o.f. around the global axis

X, Y, Z.

The DKT18 element results from the superposition of the low order

membrane constant strain triangular element CST with 6 d.o.f. and of the

efficient bending triangular element DKT having 9 d.o.f. (Fig. 6).

The linear stiffness matrix of a DKT18 shell element can be expressed

with respect to the local d.o.f.:

< "n > = < u
l

v
l

w
l 9x1 9yl 9zl

u2 v 2 w2 9x2 Qy2 9z2 (48)

u 3 v 3
w
3

9x3 ey3 ez3 >

as [22]; [11]:

t ^ ]
=

[ l^n ] + [ kj, ] + [ k ez ] (49)

21
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global d.o.f. at a node:
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Figure 5. DKT18 Shell element
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Figure 6. CST and DKT plate elements
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[ k_ ] is the stiffness matrix of the CST element. It is a simple matrix

with constant terms. No numerical integration is necessary since the

displacement u and v are linear.

[ kjj ] is the stiffness matrix of the 9 d.o.f. DKT plate bending element.

This element is well documented in [6], [7], [8] and is obtained from the

the technique of discrete Kirchhoff constraints. This simple plate

bending element satisfies all convergence criteria (like the patch-tests)

and has been found very effective and reliable for thin plate bending

analysis. It has shown good behavior with respect to element

distortions. The stiffness matrix of the DKT element is obtained exactly

(in linear analysis) with 3 numerical integration points in the elements

[19].

[ kQz ] is a fictitious stiffness matrix with non-zero components related

to 9^1 , 9z2> ^Z3 on -ly* This matrix is necessary in order to avoid the

singularity of the stiffness matrix in the case of copianar elements.

The coefficients of this matrix should be small enough so that they do

not modify the correct solution (with membrane and bending energy only)

and big enough to avoid numerical errors. Two approaches are considered.

The first is described in [ 23, Eq. 13.18 ] with a= 10~ 4 for our

computations on double precision VAX computers. The second method is to

consider only diagonal coefficients with values a times the minimum of

the diagonal rotational coefficients of the bending stiffness matrix.

[10]

In the case of symmetrical material properties with respect to the middle

surface of the shell the stiffness matrices [ k^ ] , [ kf ] , [ k^ ] are

not coupled so that a large number of coefficients of [ k» ] are zeros.

23



The local coordinate x, y, z of an element are shown on Fig. 5. x axes

coincides with side 1-2 (origin in 1) z is normal to the plane 123 (with

direction resulting from the cross products of 12 x 13). y is such that

x, y, z are orthogonal and right-handed. The relation between the local

coordinates and the global ones are [22], [23];

{ x } = [ X ] { X } (50)

with

<x>=<x, y, z>

<X>=<X, Y, Z>
(51)

[ X ] is a 3 by 3 matrix of the direction cosines of x, y, z with respect

to X, Y, Z.

The element local d.o.f . { u^ } are related to the global ones { un } by:

{ u^ } =
[ T ] { un } (52)

with

[ T ]
=

[ X ]

[ x ]

(53)

Therefore, the stiffness matrix of a shell element in the global

coordinate system is:

[ kjt ] - [ T ]
T

[ kjj ] [ T ]

If I f n ] is a force vector resulting from the discretization of

24
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distributed loads on the elements (components fx , fy or f z ) then the

corresponding force vector in the global, coordinate system is:

{ f } - [ T ]
T

{ f } (55)

After the process of assemblage, modification due to boundary conditions

and solution of the linear system we can obtain the strains and the

stresses at any point in the element:

{ H > = I Bm 1 ( u™ } + z [ Bb ] { u£ } (56)
~n u ~n

where

< uJJ
> = < Ul vj u 2 v 2 u 3 v 3 >

< H* > = < w
l

9xl 8yl w
2 9x2 9y2 w

3 ^3 ^3 > < 57 >

[ T^ ] is constant and [ B^ ] (the linear strain operator of the DKT

plate element) is linear in x, y.

In the absence of coupling between membrane and bending effects we have:

{ N } = [ Dm ] [ Bm ] { u£ }

(58)
{ M } = [ Db ] [ Bb ] { ub

}

and therefore

:

{ a } = [ 1^ ] [ Bm ] { u£ } + z [ % } [ Bb ] { u£ } (59)

[ Dm ] and [ D^ ] are 3 by 3 membrane and bending material matrices. In

the ususal case of plane stress isotropic material:
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Eh

[ Dm 1
= l-v2

1 v

v 1

j^
2 -J

12

(60)

where E and v are Young's modulus and Poisson's ratio.

Eq. 58 shows that in general the membrane forces are constant and the

bending moments vary linearly.

We have computed the stress resultants, the principal stresses and the

Von Mises equivalent stress on the outer faces of the shell at the

maximum of 7 points per element (centroid, integration points, corner

nodes). The corner node values are discontinuous but can provide useful

information with respect to node location and with respect to precision

in the results.

The simple DKT18 shell elements has been used extensively for linear

analysis of shells and is implemented in several computer codes working

on mini and micro-computers. The main disadvantage of the element are

the CST element as membrane element and sometimes the non-energy

associated 0£ d.o.f.'s.
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3.2 The element matrices for TLF nonlinear analysis

Our TLF combined with the use of the flat triangular DKT18 shell element

is based on the following definition of the G-L strain:

{ oe } - { h > + { %* > (61)

with

u, x + z 9
y , x

{ ei ^
=

{
v ' y " z ^'y (

^ 62 ^

u »y + v »x " z ^'x " Vy

1 2

2
w >x

{ ^i } = (I w,|
}

(63)

w, x w,
y

where the lower left index o has been omitted everywhere for

simplification, i.e.,u, v, w, 9jj and 9y are displacements and rotations

with respect to axes x, y, z of the undeformed shell element.

{ ££ } is the vector of linear strains which leads to the linear

stiffness matrices [ k^ ] and [ k^ ] presented in section 3.1.

{ e^ } involves only derivative of w with respect to x and y. This

nonlinear part of G-L strain is associated with the so-called Von Karman

plate theory, that is this expression, will be valid only for large

displacements and moderate rotations. Therefore, the TLF discussed here

is valid with the above assumption and a flat triangular discretization

of the shell in its initial configuration.

Eq . 61 gives :

{ 6 e } = [ B6 ] { 6 uj, } (64)
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where < 61^ > = <5 < "n >

with < Un > given in Eq. 48

[ B6 ] - [ B* ] + [ B^ ] (65)

[ B^ ] is the linear operator which leads to [ k™ ] and [ k^ ]

t BfU 1

"

w
w,x < N x >

w
w,y < N y >

»

w,y < N
W
X > + wlx < N

W
>

with

(66)

w = < N" > { u^ } (67)

< N*7 > has nine non zero components which are associated with a cubic

Hermite interpolation function for w. This 9 term interpolation function

is chosen so that it is invariant with respect to local coordinate x, y.

This incomplete cubic interpolation is given in [23, Eq . 10.29].

The internal forces Eq . 24 for the element in the global coordinate

system is then defined as :

{ of int } =
[ oT ]

T
/ [ B6 ]

T
{ a } dve (68)

with [ T ] - [ T ] given in Eq . 53 and [ B6

the case of elastic behavior:

{ a } = [ D ] ([ B
Z ]

+1 [ Bni ]) {u^ }

] given in 65 and 66. For

(69)

{ fex t } ^ * 25 depends on the loading. If the loads are not path

dependant { f ex t } is constant, if not { f ext } is a function of

{ Uj, }. The interpolation functions for the evaluation of the equivalent

forces (Eq. 25) are considered linear for u, v, w.
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The following expression can be considered in the case of uniform normal

pressure of intensity p with respect to the deformed middle surface:

6Wp
= p / ( - w, x 6u - w,y 6v + 6w ) dxdy

s e

= < «an > <
f4xt } " < 6un > < fJxt }

[ -falA 1 - / [ B £
]T

[ D ] [ Bn£ ] + [ BnJl
]T

[ D ] [ Bji

ve

+ [ BqA ]
T

[ D ] [ Bnil ] dVe

Moreover:

29

(70)

with

{ ofP
xt

} - [ T ]T
{ fP^ } (71)

The tangent stiffness [ kt ] as defined in Eq. 33 is such that:

[ okt ]
= [ T ]

T
[ okj. ] [ T ] (72)

where

I okt 1
=

[ H.Z 1
+

I °ki£ 1 + [ ok a ] (73)

[ k^ ] is given in Eq. 49.

For elastic material:

{ 6a } = [ D ] { 6e } (74)

Therefore:

(75)

f °£na ]
= / [ B. ]

T
[ N ] [ B. ] dxdy (76)



where

[ N ] -
N.xy

Nxy N
y

(77)

[ B«|) ]
=

w
U< N,

y >J

(78)

with < Nw > the 9 term cubic function Eq. 67.

The [ k^ ] matrix is not necessary for our moderate rotation TLF.

Matrices [ okj^ ] and [ ok ] are evaiuated with no negiecting terms in

the tangent stiffness matrix using 3 numerical integration points.

The TLF as presented above will give the nonlinear solution of arbitrary

shell structures within the approximations considered. That is, the

converging solution with mesh refinement will always be restricted to the

moderate rotation assumptions.
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3.3 The element matrices for ULF nonlinear analysis

In our Updated Lagrangian Formulation using the DKT18 shell elements the

intermediate configurations ^T are not the exact configurations of the

shell. These approximate configurations will result from:

- the discretization of the shell using flat triangular elements

- the assumption of moderate rotations between two configurations (like

between *T and T)

.

Hence the configuration T'is obtained from * T by making the same

assumptions and the same type of computations as between ° r and r in the

TLF procedure.

So we assume that the current coordinates in * V are known. They result

from:

{ U } = i x } + { J u } (79)

(The curvatures in 1 r are neglected as they are in ° r) . We also assume

that the Cauchy "true" stresses { a } are obtained (and stored at the

integration points of the triangular elements). These stresses are in

equilibrium with the surface forces fx , fy and f z «

The necessary information to obtain r are the residual vectors and the

tangent matrices of each element. These quantities are obtained in a

similar manner as in TLF.

The internal forces { ifint ) are defined as:

<
l
f int > = [

t
T ]

T
/ [ jBd ]

T
{ a } dV (80)

ire
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[ iT ] is the matrix of direction cosines between the iocai axes *x, *y,

*z in *T and the global axes X, Y, Z.

[
jB6 ] is similar to Eqs. 65 and 66 where w is the displacement in the

*z direction between *r and r.

{ a } is defined as:

{ a } =
[ jo } + { x

a } (81)

and

{ i<3
} = [ D ] ([ B z ]

+1
[ 1

Hnl ] { x
un } (82)

{ ^un } are the nodal d.o.f. in the global coordinate system and refer to

displacements and rotations between * T and T.

The external forces { ifex t } include the forces from "r to I*.

The tangent stiffness matrix is kept complete and is given by:

[ l^t 1 » f lT ]
T

[ ikj- ] [ iT ] (83)

where [ ^kt ] is similar to [ kj- ] .

We again note that the geometric stiffness matrix [
\k_ ] contains the

influence of the stresses from ° T to r, and that [ i^^ ] is nonlinear

in terms of ^w (from 1 r to D

.

We note that the follower forces are easily taken into account in the ULF

since the coordinates (and therefore the element orientations) are

updated after each new known configuration.

The performance of the ULF in computing with precision the nonlinear

response of shells with large rotations will not only depend on the
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number of elements but also on the number of steps (or configurations * r)

between °Y and the unknown configuration r, because of the assumption of

moderate rotation between two configurations.
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4. ON THE AUTOMATIC SOLUTION FOR PRE AND POST BUCKLING

4.1 Solving the nonlinear equations.

The solution in both TLF and ULF must satisfy a set of simultaneous

nonlinear algebraic equations as given by Eq. 27 or 46 of the form:

{ R (U,X) } = X { Fext (U) } - { Fint } = { } (84)

where the number of equations n is equal to the total active d.o.f. of the

discretized problem, ({ U } stands for these active d.o.f). X is a load

parameter (we consider only one variable loading). { F^nt } is always a

function of { U } and { FexC } is so only if the loading is path

dependent

.

In the nonlinear analysis of shell structures, the "load-displacement"

curves can exhibit all kinds of forms depending on the problem (geometry,

loading, boundary conditions, material properties). [1], [2]...

In this report we consider only elastic behavior of shells with large

displacements and large rotations, pre and post-buckling with multiple

limit points, snap-through and snap-back behavior. The problem of

determining Euler bifurcation loads by solving linear eigenvalue problems

is not considered although the basic ingredients (stiffness matrices,

geometric stiffness matrices, and eigenvalue equation solvers are

available). Bifurcation loads can, however, be obtained after the

introduction of a perturbing parameter that discloses the bifurcation

mode.

The complete determination of the load displacement curves can be

performed using different strategies all based on a number of iterative
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methods. The problem is to obtain:

- the n components of { U } for a given X or

- the n components of { U } and X with one constraint equation.

The over-all behavior of the load-displacement curves can be

characterized by the so-called current stiffness parameter [24] Sp.

One simple definition in the case of constant loading is:

- ,
AXP < AU > { F }

SP " AX^ < AU^ > { F }

(85)

p p
{ AUjj } is the linear solution for AX^. (a U } and AX are the

increments of displacements and of load at step p. Sp is a useful

parameter in an automatic determination of the complete load displacement

curves

.

Three strategies have been implemented and used to solve various

nonlinear shell problems. The first is the load control strategy

(prescribed X), the second is the one-displacement control strategy (one

prescribed component of { U }) , the third is the arc-length strategy

involving all d.o.f..

The three strategies are using the Newton-Raphson method to obtain the

incremental solutions and are as automatic as possible within their own

limitations

.
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4.2 The Newton-Raphson method with prescribed forces

The algorithm is the following [ ], (Fig. 7a)

step p : \P, { UP } known solution

step p+1: XP+1 = ~X { U 1
} = { UP }

iterations: i = 1 to NITER

{ R1 } = I { Fext (U1 ) } - { Flnt (U 1
) }

[ K^ ] { AU } = { Ri
}

{ Ui+1 } = { U1 } + { AU }

TEST convergence

step p + 2 ...

(86)

where [ K_ ] is the global tangent stiffness matrix which is computed at

each iteration in the full Newton-Raphson (N-R) method or computed only

at the beginning of the iteration process in the modified N-R method.

The test of convergence is:

TEST < EPSILON (87)

with TEST defined as:

AU II
TEST1 =

or

U 1

(88)

TEST2 = AU

II
Ui" UP

||

(89)

where || U = (< U > { U }) ^ 2 is the Euclidean norm of the total

displacement vector. We have usually considered EPSILON = 10
-

-5 if TEST1

is used and 10~ 2 if TEST2 is used. The TEST2 is motivated so that all
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steps (particularly in the ULF) will have the same convergence

requirements.

\ is fixed by the user or determined automatically. If no convergence

has occurred (i.e., i> NITER and TEST > EPSILON) than the given ~X or ~AA is

cut by two automatically until convergence is reached. A\j = XP
+ ^ - )P

can also be modified depending on the convergence rate and according to:

"^p - aVi YFT
a

(90)

where AAp_i is the increment of loading at the previous solution step.

Id is a number of required iterations and In-\ is the number of

iterations at step p-1. a is a number defined by the user. We have

considered a = 1 and 0.5 with Id = 4 in the full N-R and 6 in the

modified N-R.

The above strategy has been found effective to obtain the load deflection

curves automatically up to the first limit point, giving the buckling

load, (and therefore the complete nonlinear response if there is no

limit point).
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4.3 The N-R method with a prescribed displacement component.

This algorithm has been found very efficient to obtain the post-buckling

response when a particular component of the displacement vector stiil

increases after the limit load. [12], [13], [25]

The algorithm is the following (Fig. 7b):

step p : XP, { UP } known solution

step p+1 : X 1 = XP
; { U 1

} = { UP }

r- iterations: i = 1 to NITER

{ R1 } = X1 { F \ - { F.\ }
ext int

[ K^ ] ( { AUR } { AUF }) = ( { Ri
} { F

e^ })
(91)

{ Ui+1 } = { U1 } + { AUR } + AX { AUF }

X
i+1 . ii= X1 + AX

where AX is such that

(AUR)q + AX (AUF )q = AUq

' TEST convergence

step p + 2 ...

where AUq is a prescribed displacement increment, ( AUR )q and ( AUp)q are

the q
th component of vectors { AUR } and { AUF }. It is also possible to

use the modified N-R method.

For the same problem and convergence test the above algorithm leads in

general to a faster rate of convergence compared to the prescribed

loading. This is due to the modification of [ 1C, ] after the first

iteration. However, two load vectors are considered at each iteration.

As in the previous algorithm, AUq can be automatically adjusted if
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convergence doesn't occur within the limitation given by the user. This

algorithm is very efficient in many snap-through situations and works

until a limit point in displacement (snap-back) occurs.

The above algorithm is a particular case of the arc-length algorithm as

discussed below.
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4.4 The N-R and arc-length control method.

The so-called arc-length or modified arc-length method has received a

great attention in the last five years [14], [15], [16], [17], [18],

[26].

The algorithm is similar to the previous one (displacement control). It

is only different in the evaluation of AX at the first and subsequent

iterations. (Fig. 7c):

step p : AP, { UP } known solution

step p+1 : X 1 = XP
; { U 1

} = { UP }

r iterations: i = 1 to NITER

{ R1 } = X1 { F * - { F *
}

ext mt

[ K^ ] ( { AUR } { AUF }) = { Ri
} { F

ext })

ri+1
{ U1+1 } = { U1 } + { AUR } + AX { tfJF }

Xi+1 = X1 + AX

where AX is such that

< Ui+1 - UP > { Ui+1 - UP } = (AS
p )

2

and

< U1 - UP > { U1+1 - UP } > i>l

< UP - UP-1 > { U 2 - UP } > 1=1

L TEST convergence

step p + 2 ...

(92)

(93)

(94 a,b)

Eq . 93 is a quadratic equation in AX that can be written as

a AXZ + b AX + c = (95)

with
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a = < AUF > { AUF }

b = 2 < AUF > { V }

c = < V > { V }
-

( ASp) 2

<V> = < AUR > + < U1 - UP >

If no real root of Eq. 94 exists, the arc-length ASp
must be reduced. The

choice of the real root is such that Eq. 94a or b is satisfied.

One should mention here that other definitions of the arc-length (Eq. 93)

can be made, but the above relation has been found effective to solve our

examples

.

As in the two other strategies, it is possible to adjust automatically

the value of ASp between two steps:

- no convergence ASp
= 0.5 AS

p_i

Id
- if convergence ASp

= ASp_^ Vi
with Id, Ip-i> a as discussed in section 4.2.

(96)

If the arc-length strategy is used, we first start the problem using one

of the two previous methods (load or displacement method). Then we

compute AS2 using Eq . 93 to obtain the solution at step 2 using the

arc-length algorithm.
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5. NUMERICAL RESULTS

5.1 Comments on the computational procedure

A FORTRAN program has been written partly for this research. The basic

routines of the finite element method are those documented in [19]. We

have made extensive modifications in the nonlinear block to implement our

methods and strategies. We have also written the routines dealing with

the triangular shell element.

The examples discussed below are solved using a VAX 11/780 or an

APOLLO/ DN300.

Only simple problems have been solved and presented in this report. They

involve a limited number of d.o.f. (about 200). These examples are

chosen in order to show the various possibilities of the present

formulation to deal with pre and post-buckling and large rotations of

arbitrary shells.
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5.2 Nonlinear response of a 3D truss structure.

This example taken from [27] is chosen to show the possibility of the

implemented numerical methods to deal with the automatic computation of

very nonlinear problems. The 3D structure shown in Fig. 8 is made of 24

truss elements having 2 nodes and three d.o.f. per node (the 3 displacement

components u, v, w) . The structure is fixed at the base and subjected to

a point load at the center 1 (in the u direction on Fig. 8). There are

21 active d.o.f.

A large number of runs have been performed with various parameters such

as

:

- TLF or ULF options

- arc-length with or without adjusting ASp

- full N-R or modified N-R

- load value at the first step

- influence of the TEST of convergence in the numerical process

Some load-displacement curves are given on Figs. 9 and 10, where u is

the displacement under the load P and v is the displacement in direction

y at node 2. Figure 9 is obtained with the full N-R and the automatic

arc-length method with no modification of arc-length (Eq. 88 is used with

e = 10~3). The first nonlinear solution is obtained with a prescribed

value of P = 1CF P/EA equal to 2. Then the arc-length ASD is computed

using Eq. 93, i.e. AS D = < U 1 > { U 1
}. All symbols in Figure 9 coincide

'P

= / III S t TT 1 \ All clmKn I c -in T

with equilibrium solutions obtained automatically. There are 8 limit

points for the range of load and displacements considered and these

curves correspond to the primary solution (with full symmetry). Of
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course there are other solutions which are associated with bifurcations.

Figure 10 presents the solution in the case of automatic modification of

the arc-length using Eq. 96 where a = 0.5 and Id = 4. All points on

Figure 10 correspond to solutions. This figure shows the robustness of

the automatic computation algorithm when full N-R and arc-length methods

are combined. Our results coincide with those presented in a recent

paper [27]

.
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5.3 Snap through the snap back of the cylindrical shell (CTEX4)

The problem presented in Figure 11 has been widely used in the literature

to compare the performance of various nonlinear formulations, finite

element models and nonlinear solution strategies. [18], [20], [28],

[16].

A simple mesh of DKT18 elements was considered (48 elements, 210 dof

before elimination of the imposed variables). The straight edges are

hinged and the curved edges are free.

In this problem we have studied the influence of the formulation (TLF

verse ULF) , the influence of the arc-length strategy on the solution.

The solutions have been obtained using the full N-R or the modified N-R

method

.

The influence of the formulation can be seen on Figures 12 and 13 where

curves relate the load versus the normal under the load or at the free

edge. (The results have been obtained with full N-R, with constant

arc-length steps). The first solution was obtained for a prescribed load

P = lkN. Figures 12b and 13b are in good agreement with the "reference

solution" as given by several authors. The TLF gives a higher value for

the buckling load and doesn't reproduce the snap-back behavior for the

central displacement for the small mesh considered. However it is

expected that the correct answer will be obtained with the refinement of

the mesh since this problem doesn't involve very large rotations.
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The curves on Figure 14 are obtained using the modified N-R method, the

ULF and a variable arc-length increment (with a= 0.5 and Id = 4). The

results are the correct ones and are obtained very efficiently in terms

of computer time.
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Figure 11. Cylindrical shell with free curved edges and hinged
straight edges (CTEX4)
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5.4 Spherical cap

The problem presented on Figure 15 has also been considered by several

researchers since 1969 [29], [20], [30], [31], [32]. The four edges are

hinged and a load is applied at the center. A uniform mesh of 5 by 5

elements (50 elements, 216 d.o.f. before the elimination of the

prescribed d.o.f.) has been considered.

The central deflection versus the load is given on Figure 16 for both TLF

and ULF and using the imposed displacement and the full N-R methods (Eq.

91). The value AUq is constant and equal to 0.2 h. The ULF gives good

results, in agreement with the results given by other authors. The TLF

leads to a slightly higher buckling load and doesn't represent the

unstable branch properly. A finer mesh would result in better results

using the TLF here since the displacements are only two times the

thickness. The same type of results have been obtained using the

arc-length algorithm with or without variable AS
p

.
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5.5 Cylindrical shell with clamped curved edges (CTEX1)

The membrane stiffening behavior of a cylindrical panel subjected to a

central load with straight free edges and clamped curved edges, as

described in Figure 17, has been studied with a 4 by 6 mesh for a quarter

of the shell.

The central displacement versus the load is presented in Figure 18. The

numerical results presented are obtained using load incrementation

(constant increments AX = 1 lb) and full N-R, for both TLF and IJLF. With

the TLF, the results are quite far from those of [33] using sophisticated

cubic Lagrangian isoparametric elements (a mesh of 4 x 6 elements leading

to 1200 d.o.f. was considered in [33]). The results using TLF elements

cannot be improved by reducing the load increments since convergence has

occurred and there is no influence of the load steps on the converging

results. These results can, however, be improved by using finer meshes.

The results with TLF are not good because we have fairly large

displacements (up to 10 times the thickness).

For the same number of load steps, the ULF formulation gives better

results than the TLF. This is due to the effect of large displacements

and moderately large rotations. Improved results can be obtained with

the ULF if the load steps are reduced. The correct results would be

obtained if both the number of elements and the number of steps are

increased.
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R = 2.5 in.
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h = 0.01 in

e = 45

E = 10
7
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V = 0.3

4 by 6 DKT 18 mesh

Figure 17. Cylindrical shell with straight edges free
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Figure 18. Cylindrical shell CTEX1

Influence of the formulations
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5.6 Far post-buckling of a cylindrical shell with hinged curved edges

(CTEX2)

The shell structure presented in Figure 17 is again considered but with

hinged conditions on the curved edges (these edges are not restrained in

the axial direction).

In this case the behavior is different from the clamped case since the

displacements are much larger for the same load and snap through occurs

for a load of 2.3 lbs.

The same type of analysis as in the clamped case has been performed for

< W/h < 14 using now the prescribed displacement algorithm for various

AUq = Awq and again the full N-R method. The results are presented in

Figure 19 for the TLF and the ULF (7 and 14 steps). The inability of the

TLF to find a limit load is clearly shown in the figure. Again better

results would need much more elements. The ULF leads to good results

with a limit load 20% higher than the reference value taken from [33]

with 28 steps. A more accurate value would need more d.o.f.'s.

The response of the shell for very large displacements and rotations has

also been studied for the same mesh. Figure 20 shows P versus the

central displacement up to 150 times the thickness (and 1/4 of the

length) using 70 steps, the ULF, full N-R and the displacement control

algorithm. The slight oscillations observed on Figure 20 are due to the

fact that in the regions considered the overall tangent matrices are very

ill-conditioned. The influence of the type of representation of [ k^ ]

in these regions is important. If the displacement increments are

reduced, these oscillations disappear and the behavior is slightly
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different as shown in Figure 21 where 140 steps are considered. One can

observe on this figure the low post-buckling minimum and a second

snap-through for W/j = 90 which corresponds to a local deformation of the

cross-section near the boundary. The results presented in Figure 21 are

in good agreement with those reported in [33] , the most important

difference being in the evaluation of the first buckling load as shown on

Figure 20.

The above results have also been obtained using the automatic variable

arc-length algorithm combined with the full N-R method. This example has

clearly shown the capability of the formulation to deal with large

rotations

.
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Figure 19 Cylindrical Shell CTEX2 (Influence of the formulations)
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Figure 20. Cylindrical shell CTEX2

Far post-buckling (ULF, 70 steps)
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6. CONCLUSIONS

The numerical results presented in this report, have shown the ability of

the DKT18 elements combined with the ULF to give accurate and efficient

answers to very different types of nonlinear shell problems including

snap-through, snap-back situations and lar^e rotations post buckling.

The three automatic strategies have been tested and it is found that the

full N-R method combined with the arc-length method are very reliable and

powerful to deal with all kinds of nonlinear situations. The overall

package can solve moderately large problems on mini and micro-computers.

This package has several capabilities since it has retained different

aspects such as TLF, ULF, full or modified N-R, automatic constant or

variable load or displacement or arc-length increments,... The modules

dealing with the nonlinear procedures and the DKT18 shell elements can

be adapted to other finite element codes having a similar structure than

MEF [19]. Also, the procedures are independent of the DKT18 shell

element i therefore, the library of elements can be enriched in the

future. Elasto-plastic behavior can also be included if small strains

are assumed.
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